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Abstract

Rockfall barriers play a pivotal role in ensuring safety
in areas susceptible to rockslides. Despite the numerous
existing models, certain complexities in rockfall barrier
mechanics remain unclear. This report introduces Rock-
BarrierAnalytica (RBA), an open-source explicit Discrete
Element Method (DEM) simulator built in Taichi Lang.
RBA blends the Euler method with Taichi’s parallelization
capabilities to offer a unique, adaptable, and intuitive
simulation framework. This tool discretizes barrier com-
ponents, integrates comprehensive interaction logic, and
provides an interactive visualization platform. RBA is
still under development and requires further refinement.
It invites community involvement and, with continued
enhancements, could emerge as a new useful simulation
tool.

1 Introduction

Flexible rockfall barriers are essential in ensuring safety
in regions prone to rockslides and geological disturbances
[1]. Over the past two decades, various numerical mod-
els have been developed to understand and optimize these
structures [2], employing methods like the Finite Element
Method (FEM) [3, 4, 5, 6, 7], the Discrete Element Method
(DEM) [8, 9, 10] or a hybrid of both [11].

However, capturing the dynamic impact response of
these barriers remains challenging. The diverse geometri-
cal configurations and potential impact scenarios introduce
complexities that can make many models fall short. As a
result, significant gaps persist in our understanding and pre-
dictive capabilities of rockfall barriers.

Historically, most solutions in this domain have been
closed-source, built on commercial software platforms.
While these models, rooted in general-purpose physics en-
gines, are effective, they might not be optimized for unique
rockfall scenarios or innovative barrier designs. Many of
these models prioritize simulations of test conditions based
on the guidelines set by the European Organisation for
Technical Approval [12], which may not always reflect real-
world conditions. This underscores the potential advantage
of a more adaptable, open-source framework to spur inno-
vation and deepen understanding.

This report introduces RockBarrierAnalytica (RBA): a
novel, open-source simulator built in Taichi Lang, a high-
performance parallel programming language embedded in
Python. Developed as a student project, the model is char-
acterized by its simplicity, adaptability, and the seamless in-
tegration of intuitive algorithms with the Euler method. The
synergy between Python and Taichi ensures enhanced code
readability. While the model’s streamlined design affords it
flexibility, it’s not without its limitations. As it stands, the
simulator lays a foundation for future, more intricate and
comprehensive simulations of rockfall barriers.

2 Materials and methods

2.1 Time Integration Using Euler’s Method

Euler’s method is a simple explicit first-order numeri-
cal procedure employed to solve ordinary differential equa-
tions. Given an initial value problem:

du

dt
= f(u, t) (1)

with an initial condition u(t0) = u0, the Euler method ap-
proximates the solution at time tn+1 as:

un+1 = un +∆tf(un, tn) (2)



where ∆t is the time step.
For dynamic problems, the acceleration a at each node

of the simulation is related to the force F and mass M as:

F = Ma (3)

Using Euler’s method, the velocity v and displacement u at
the next time step are updated as:

vn+1 = vn +∆tan (4)

un+1 = un +∆tvn (5)

The Euler method is straightforward but has limitations,
especially for dynamic systems with rapid changes. Its lin-
ear approach can miss quick shifts within the chosen time
step, ∆t, leading to inaccuracies. The solution’s stability
can also be compromised if ∆t is too large relative to the
system’s smallest element size and wave speed. For RBA,
which simulates impacts occurring in less than a second, us-
ing a small ∆t is both practical and necessary. By choosing
a smaller time step, we capture the rapid events accurately,
mitigating the Euler method’s shortcomings for such brief
scenarios.

2.2 Taichi Lang

Taichi is a recent high-performance programming lan-
guage that provides a flexible platform for creating, among
other things, physically based simulations using a blend of
imperative and data-oriented styles. It has many relevant
advantages:

• Embeddability: Taichi is embedded in Python, making
it easy to leverage the Python ecosystem for data pro-
cessing, visualization, and more.

• Performance: Taichi can handle large-scale simulations
efficiently. Its backend supports both CPUs and GPUs,
allowing for parallel execution and optimized perfor-
mance.

• Flexibility: The language supports a range of parallel
primitives, such as parallel for-loops and atomic opera-
tions. This makes it ideal for simulating complex phys-
ical systems that involve interactions between many el-
ements.

• Ease of Use: Taichi prioritizes user-friendliness. Its
Pythonic syntax ensures that the code remains read-
able and maintainable, and the switch between CPUs
and GPUs is easy and seamless.

In the context of RBA, Taichi provides the computational
backbone, allowing for the efficient simulation of rockfall
barriers. Its synergy with Python ensures that the simulator
remains accessible and easy to extend.

3 RockBarrierAnalytica: structure and logic

3.1 Initialization of the Rockfall Barrier Compo-
nents

To effectively simulate the dynamics of the rockfall bar-
rier, its various components are discretized within the com-
putational framework. This includes the rock, net, shackles
(both horizontal and vertical, which interconnect the nets
and fix them to the ropes), ropes, and posts. Each of these
components is represented by a set of discrete points, clas-
sifying RBA as a DEM simulator. These discrete points, or
nodes, form the foundation for computations using the Eu-
ler method. The resolution of ropes and nets, determined
by the number of points, is adjustable. However, it’s impor-
tant to note that increasing the resolution directly impacts
the computational demands of the simulation.

• Position Matrices: For each component, a matrix x is
defined to store the positions, with 3D vectors, of these
discrete points. For instance, x ball represents the po-
sition of the ball, x net denotes the positions of the
nodes in the net, and so on. These matrices are initial-
ized based on the specific geometrical configurations
of the barrier components.

• Velocity Matrices: Corresponding to each position
matrix, a velocity matrix v is defined. This matrix cap-
tures, with 3D vectors, the velocity of each discrete
point in the system. For example, v ball stores the ve-
locity of the ball, v net contains the velocities of the
net nodes, and so forth. Initially, these matrices might
be set to zero or any predefined values based on the
initial conditions of the simulation.

Barrier geometries are freely adjustable and follow the
designations given in [13], according to the schematic in
fig. 1:

Figure 1. Barrier geometries according to the swiss qual-
ity assessment standards for rockfall barriers [13].

Because the geometries (fig. 1) are variable, the contact
points between some barrier elements (e.g., between shack-
les and ropes) are found iteratively before the simulation

2



begins and saved as indices in additional matrices to speed
up and reduce the computational overhead of the contact
search algorithms during the simulation.

A brief overview of the discretization of each barrier
component as points in the 3D space is given below:

Component Description
Ropes Represented as series of points. Cate-

gorized into lower bearing ropes, upper
bearing ropes, upslope ropes, and lateral
support ropes. Each type is distinctly ini-
tialized based on its geometry and posi-
tion.

Nets Discretized into a grid of nodes. The net
is further segmented into quads, deter-
mined by the total width and height of
the net divided by the number of nodes
in each direction.

Shackles Represented in two distinct types: hori-
zontal and vertical. Function as connec-
tors, bridging the nets to the ropes and
amongst themselves.

Posts Initialized as 2 points: one for the post
base, and one for the post top, based on
the net’s width and its height.

Rock Represented as a singular point with a ra-
dius (so a sphere).

Table 1. Discretization of rockfall barrier components.

In fig. 2, a rendered scene is depicted. From the viewer’s
perspective, the orientation of the 3D axes is as follows:

• The x axis is horizontal, extending positively from left to
right.

• The y axis is vertical, increasing in value as it moves up-
wards.

• The z axis extends positively towards the viewer.

Figure 2. A snapshot from a trial simulation using RBA.

3.2 Node Interactions

After initialization, a Taichi Kernel (ensuring paralleliza-
tion) is invoked at each timestep ∆t, encapsulating the
physical logic governing the simulation components and
their interactions. For instance, gravitational acceleration
(scaled by the timestep ∆t) is imparted to the velocity vec-
tors of each node of the simulation.

3.2.1 Spring/Damper Logic

The primary mechanism that dictates the interactions
among the barrier components, as well as between indi-
vidual nodes within those components, is a spring/damper
model. This model calculates the forces by considering the
relative movements and speeds of the nodes. The general
formula for a spring/damper system is given by:

F = −k(∆x− l0)− c∆v

where F is the force, k is the spring constant, ∆x is the
displacement, l0 is the equilibrium length of the spring, c is
the damping constant, and ∆v is the relative velocity.

Various spring/damper configurations, tailored for spe-
cific barrier elements or unique needs, have been integrated,
providing adaptability in modeling a range of interactions
in the system. Additionally, these configurations can be
swapped out as needed.

1. Standard Spring/Damper: This is the basic model
that computes the force based on the relative displace-
ment and velocity of two points. Damping is applied
in the direction of displacement, following the dashpot
principle.

2. 1D Spring/Damper: Similar to the standard model but
the damping is applied regardless of direction, making
it effectively one-dimensional.

3. Yielding Spring/Damper: This model allows for
yielding behavior in the spring. When the force ex-
ceeds a certain threshold (yield force), the spring ex-
hibits plastic behavior.

4. Bending Spring/Damper: Designed to resist lateral
movements or bending. It computes the bending angle
between two directions and applies an additional force
if this angle exceeds a threshold.

5. Pin Joint Spring/Damper: Modified to work as a pin
joint connection. The damping force is applied based
only on the velocity of the second point.

6. No Compression Spring/Damper: This model does
not resist compression. Forces are only computed
when there’s an effective displacement, i.e., when the
spring is stretched.
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3.2.2 Posts

The two points of each post are vertically interconnected
by a pin joint spring/damper system, with its equilibrium
length equivalent to the net’s height. The bottom node is
fixed in space at the position of the post foundation. To em-
ulate the pin joint’s restricted degrees of freedom in the y/z
plane, the top node’s lateral movement in the x direction is
constrained by an auxiliary spring/damper mechanism.

3.2.3 Nets

The nets are modeled as a rectangular grid of nodes, fol-
lowing the simple modeling assumption shown in fig. 3.
By default, a node is connected via springs to 4 neighbour-
ing nodes (red), but additional springs can be added to the
green nodes (8 connections) and up to the yellow nodes (12
connections), changing the behaviour of the net. At each
timestep, the total forces at each node get computed using a
yelding spring/damper.

Figure 3. Model of the nets (adapted from [4]).

3.2.4 Ropes

Rope nodes are also interconnected using the spring/damper
mechanism, as illustrated in fig. 4. This system can be en-
hanced with resistance to significant bending by employing
either the bending or the 1D spring/damper. The ropes can
be pre-tensioned by adjusting the equilibrium length to a
specific percentage of the default rope segment length. The
behavior and connections vary based on the rope type: Ups-
lope ropes connect both to the posts at their endpoints and to
the assumed vertical wall. Lateral support ropes have one
end anchored to the wall, while the other links to a post.
Bearing ropes are anchored at their extremities but can slide
through the posts, with the sliding mechanism detailed later.
During each timestep, forces on a node are calculated based
on the displacements and velocities of its immediate pre-
ceding and succeeding nodes.

Figure 4. Model of the ropes (from [14]).

3.2.5 Rock Collision

In the rock collision logic, for each node in the net, the dis-
placement between the node and the rock’s center is com-
puted. When the distance between a node and the rock’s
center is less than or equal to the rock’s radius, a collision
is detected. Upon this detection, a collision normal, derived
from the direction of the displacement, is determined. The
depth of penetration into the ball is then calculated as the
difference between the ball’s radius and the computed dis-
tance.

A collision response force is subsequently computed us-
ing again a spring/damper model. This time, the spring is
proportional to the square of the penetration depth and di-
rected along the collision normal. To account for energy
loss during the collision, the damping force is applied in the
direction of the collision normal based on the relative ve-
locities of the rock and net nodes. To ensure the ball and
net no longer overlap, the net node’s position is adjusted to
resolve the penetration.

3.2.6 Nets/Shackles Interaction

The nets are connected vertically to one another through
shackles, that bind a node from one net with the correspond-
ing node of the next net. A force is computed between these
two nodes using the spring-damper without compression,
with an equilibrium length set to 0.2cm. This force effec-
tively pulls the two nodes towards each other. The vertical
shackle’s position is set to the midpoint between these two
net nodes, ensuring it remains centered between them. For
the interaction between the net and the horizontal shackles,
each horizontal shackle interacts via generic spring/damper
with a specific node on the net. The nodes corresponding
to each horizontal shackle are determined with the search
algorithm during the components initialization process.

3.2.7 Shackles/Ropes Sliding Interaction

Modeling the sliding interactions is more complex, involv-
ing a multi-step process:
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Identifying the Current Rope Segment: The segment of
the rope on which the shackle currently resides is taken
from the last time step through the appropriate index ma-
trix. This segment is defined by two nodes of the rope, and
its direction is given by:

dsegment =
pnext − pcurrent

∥pnext − pcurrent∥

where pcurrent and pnext are the positions of the current and
next nodes of the rope, respectively.

Relative Velocity Calculation: The relative velocity of
the shackle with respect to the rope is computed, subtracting
the average velocity of the rope segment to the velocity of
the shackle. This difference is projected onto the direction
of the current rope segment to obtain the relative velocity:

vrelative = vdifference · dsegment

where vdifference is the difference of the velocities of the rope
segment and of the shackle.

Projected Movement: The potential distance the shackle
would move in the current timestep, without any interrup-
tions, is determined by multiplying the relative velocity by
the timestep duration.

Transitioning to the Next Segment: If the shackle’s pro-
jected movement exceeds the current segment’s length, it
transitions to the next segment, and the remaining distance
to move is adjusted accordingly. The process is then reit-
erated from the beginning. Otherwise, the shackle remains
on this segment, and its rope indices are stored in the index
matrix for reference in the next timestep.

Friction Implementation: Friction between the shackle
and the rope is modeled as a force opposing the shackle’s
movement. This force is proportional to the shackle’s ve-
locity and is given by:

Ffriction = −µ× vshackle

where µ is the friction coefficient. This frictional force re-
duces the shackle’s velocity, simulating the resistance en-
countered during sliding.

Collision Handling: If the shackle approaches another
shackle, a collision is detected. The overlap or penetration
depth between the two shackles is calculated, and a correc-
tion is applied to ensure they remain separated. This cor-
rection is based on the direction of the current rope segment
and the magnitude of the overlap.

Spring-Damper Interaction: To ensure the shackle re-
mains attached to the rope, a spring-damper force is applied
between the shackle and orthogonal projected position of
the shackle on the rope segment. This force acts to pull
the shackle towards the rope, counteracting any deviations
due to external forces or the shackle’s own momentum. The
force is then distributed to the rope’s nodes defining the cur-
rent segment. Let t be the relative position of the shackle
along the segment, calculated as:

t =
(xshackle − xstart) · (xend − xstart)

∥xend − xstart∥2

where xshackle, xstart, and xend are the positions of the
shackle, starting node, and ending node of the current rope
segment, respectively. The forces applied to the starting and
ending nodes of the segment are then:

Fstart = (1− t)× Fsd

Fend = t× Fsd

Through these calculations, the shackle is ensured to
slide along the rope, responding to forces, friction, and po-
tential collisions with other shackles.

3.2.8 Ropes/Posts Sliding Interaction

The interaction of ropes sliding through posts follows, for
the moment, a simpler logic that than of the shackles. It still
encompasses several steps:

Identyfing the current rope node: The rope segment in-
teracting with the post top is taken from the indeces ma-
trix. The algorithm then searches locally the previous and
next 10 rope nodes to check if a new rope node is closer to
the post top, and saves its index in the matrix for the next
timestep.

Virtual Post Line and Sprind-Damper Interaction:
Given that the spring damper would simply pull the rope
node towards the top post node, countering the sliding, a
line between the post node and its base on the x/y plane is
computed. The rope node gets projected on this line and a
spring/damper force is computed between the node and this
projection. In this way, the computed force doesn’t have a
lateral x component and the rope will be able to slide past
the post.

3.3 Graphical User Interface

The Graphical User Interface (GUI) leverages the inter-
nal capabilities of Taichi. The position matrices of all simu-
lation elements get ”flattened” and inserted in the 3D scene
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either as particles (shackles, rock), lines (ropes and posts)
and meshes (nets), as visible in fig. 2. The GUI’s inherent
tools allow users to view the scene from multiple perspec-
tives in real-time during the simulation and also offer the
capability to capture and save the visual output in various
format.

4 Discussion

The simulator currently achieves stability with timesteps
on the order of magnitude of 1 × 10−5 seconds. While the
system’s behavior appears realistic, it’s essential to note that
it hasn’t been calibrated using real-world experimental data
and established material properties. The foundational as-
sumptions in the logic and modeling are basic, serving as a
preliminary starting point for the simulation.

• Integration Method: Transitioning to more advanced
methods like the velocity Verlet or Runge-Kutta could
enhance the simulation’s stability and symplectic prop-
erties.

• Net Model: Given the DEM approach, there’s potential
to model the entire net discretely. This would involve
representing each ring as a circle of interconnected
points, mirroring a real net. With the right contact al-
gorithms, this could lead to a highly realistic net sim-
ulation. To the author’s understanding, no such model
has been presented in existing literature.

• Sliding Algorithms: The current sliding algorithms
don’t seem to accurately capture the real-world ”drap-
ing effect” of the net. Whether this is intertwined with
the net modeling remains to be seen, but there’s un-
doubtedly potential for refining the sliding logic.

• Breaking Elements: The simulator currently lacks
energy dissipators. Incorporating them would be
straightforward, requiring the isolation of end nodes
of the bearing ropes and assigning them the desired
stretch properties relative to the rope’s anchor point.

• Nonlinearity and Plastic Deformation: While a non-
linear spring/damper model simulating plastic de-
formation exists, there’s room for improvement.
Presently, node displacements don’t factor in plastic
deformations.

• FEM Posts: To accurately simulate potential deforma-
tions, the posts could be represented using FEM mesh
elements.

• Arbitrary Rock Shapes: With the DEM framework in
place, rocks of any shape, represented as discretized

points or spheres, can be simulated. This would neces-
sitate modifications to the contact algorithm with the
net in order to calculate the new interaction distances.

• Force Measurement: The current version lacks a sys-
tem to measure forces at strategic barrier points. To do
this, the force data calculated at every timestep at the
desired nodes has to be stored. While early RBA pro-
totypes had this feature, it’s yet to be integrated into
the current version.

By focusing on these areas, the simulator can be further
refined, offering a more accurate and comprehensive repre-
sentation of real-world scenarios.

5 Conclusions

Rockfall barriers are essential in regions prone to geolog-
ical events. Despite many existing numerical models, cer-
tain facets of rockfall barrier mechanics remain ambiguous.
This underscores a potential need for flexible, specifically
tailored open-source simulation platforms.

This report introduced RockBarrierAnalytica (RBA), an
open-source explicit Discrete Element Method (DEM) sim-
ulator developed in Taichi Lang. RBA stands out due to
its simplicity, adaptability, and the integration of the Euler
method with Taichi, enhancing model readability and ac-
cessibility.

Key features from RBA include:

• Efficient discretization of rockfall barrier components.

• Use of Euler’s method for time integration.

• Leveraging Taichi’s powerful parallelization capabili-
ties for simulation.

• Comprehensive interaction logic for barrier compo-
nents.

• An interactive graphical user interface for real-time
simulation visualization.

Nevertheless, RBA is still in development and comes
with its set of limitations. It has yet to be calibrated with
real-world data. Moreover, it currently omits the typical
braking elements of rockfal barriers and needs to better inte-
grate aspects like plastic deformations. Additionally, areas
like the sliding algorithms and net representations demand
further refinement.

In summary, RBA offers a new foundation for rockfall
barrier simulations. Its open-source nature invites commu-
nity enhancements. With further refinements and real-world
feedback, RBA could evolve into a new tool for rockfall bar-
rier research and optimization.
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6 Code Availability

The source code and documentation for RockBarrierAn-
alytica are openly accessible and can be found on GitHub at
the following link:

https://github.com/igasparini/
RockBarrierAnalytica

Contributions are welcomed.
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